The Synthesis of Sinigrin

By M. H. BENN and M. G. ETTLINGER

[Department of Chemistry, University of Alberta in Calgary, Calgary, Alberta, Canada (M.H.B.)]

SINIGRIN (potassium myronate), the glucosidic oil, was isolated in 1839¹ from seeds of black mustard, Brassica nigra Koch. First of the

¹ A. Bussy, Compt. rend., 1839, 9, 815; J. Pharm., 1840, 26, 39.

mustard oil glucosides to receive detailed analysis,² it became the textbook example of its class. The structure (I) proposed and established for sinigrin in 1956³ has been confirmed by X-ray crystallographic analysis.⁴ We can now report the first synthesis of sinigrin.

But-3-envl bromide was treated with sodium nitrite and urea in dimethyl sulphoxide⁷ to give 4-nitrobut-1-ene (b.p. 144°/670 mm., n_{p}^{26} 1.4305), which was converted into the sodium salt (II) with sodium ethoxide. Addition of the salt (II) to a lithium chloride-hydrochloric acid mixture

The general route from hydroxamovl chlorides to mustard oil glucosides, which was used for synthesis⁵ of sinalbin, the other classical mustard oil glucoside, served also to reach sinigrin. However, the required hydroxamoyl chloride was obtained not from the corresponding aldoxime as usual but from the nitro-compound, by a reaction that Kornblum and Brown recently noted.6

at 0° yielded⁶ but-3-enohydroxamoyl chloride (III), which was condensed directly with tetraacetyl- β -D-glucopyranosyl mercaptan and triethylamine⁵ to give the thiohydroximic acid (IV) [m.p. 164-165°, considerably higher than reported⁸ for material from enzymatic hydrolysis of tetraacetylsinigrin; $[\alpha]_D^{26} - 13^\circ$ (c, 0.14 in CHCl₃)]. Sulphonation of the intermediate (IV) with

- ⁴ J. Waser and W. H. Watson, Nature, 1963, 198, 1297.
- ⁵ M. H. Benn, Canad. J. Chem., 1965, 43, 1.
- ⁶ N. Kornblum and R. A. Brown, J. Amer. Chem. Soc., 1965, 87, 1742. ⁷ N. Kornblum, H. O. Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto, and G. E. Graham, J. Amer. Chem. Soc., 1956, 78, 1497.
 - ⁸ Z. Nagashima and M. Uchiyama, J. Agric. Chem. Soc. Japan, 1959, 33, 1068; M. Uchiyama, ibid., 1963, 37, 543.

² See F. Challenger, "Aspects of the Organic Chemistry of Sulphur," p. 115, Butterworths, London (1959) and A. Kjær, Fortschr. Chem. org. Naturstoffe, 1960, 18, 122.
³ M. G. Ettlinger and A. J. Lundeen, J. Amer. Chem. Soc., 1956, 78, 4172.

pyridine-sulphur trioxide, followed by treatment with potassium hydrogen carbonate, gave tetraacetylsinigrin (V), m.p. 193–195°, $[\alpha]_{0}^{26} - 16°$ (c, 0.14 in H₂O),⁹ which on deacetylation with methanolic ammonia⁹ afforded pure, crystalline sinigrin (I), m.p. 125—127°, $[\alpha]_{p}^{28}$ —17° (c, 0.2 in H_2O). Both the synthetic tetra-acetate and sinigrin were identical with samples of natural origin.

(Received, September 2nd, 1965; Com. 556.)

⁹O.-E. Schultz and W. Wagner, Arch. Pharm., 1955, 288, 525; A. Kjær, R. Gmelin, and R. B. Jensen, Acta Chem. Scand., 1956, 10, 432.